Master of Science in Data Science and Analytics

Our data science graduate program is designed to prepare students for careers in many disciplines and backgrounds by relying on the use of real data to address current problems and issues.

Decoration Graphic
pattern
Acquire In-Demand Skills for a Data-Driven World: Masters in Data Science & Analytics

The Master of Science (MS) in Data Science and Analytics will prepare students to transform data into information so that insight is gained for addressing real-world problems.

Our data science graduate program requirements consist of a core set of courses in statistical analysis, basic programming, machine learning, data extraction and transformation, and methods of data science. Students will also complete an Emphasis in Machine Learning and complete a capstone project.

Data science and analytics is an area in which many disciplines and backgrounds can and do participate. Graceland's program takes a very practical and applied learning approach to skills development. The program relies on the use of real data sets to address challenging and current problems and issues. Data science involves using data to predict future outcomes, whereas data analytics focuses on analyzing past data to make decisions in the present. Both are crucial for various fields such as government, private industry, finances, healthcare, tech, or transportation.

Offerings
Graduate
Field of Study
CSIT and Data Science
Format
Online Campus
Master of Science in Data Science & Analytics Curriculum
  • MS Degree – Data Science and Analytics

    The MS degree requirements include 21 semester hours in the Core Requirements, 9 semester hours in an Emphasis, and 3 semester hours in a Capstone experience. The total hours required to attain the MS degree is 33 semester hours. Each course will be offered in 8 week segments on a schedule to be determined.

    Core Requirements (21 semester hours) and Capstone Experience (3 semester hours)

    Machine Learning Emphasis (9 semester hours chosen from the following)

    Courses Offered
    • DSCI5300Introduction to Data Science
      DSCI5300 Introduction to Data Science - 3 s.h.

      An introduction to the methods of data science through a combination of computational exploration, visualization, and theory. Students will learn scientific computing basics, topics in numerical linear algebra, mathematical probability, statistics, and social and political issues raised by data science. Prerequisites: Prior courses in statistics, calculus and basic programming.

    • DSCI5320Practical Applications of Data Science
      DSCI5320 Practical Applications of Data Science - 3 s.h.

      Exploratory data analysis is introduced along with fundamental considerations for data analysis on real data sets. Classical models and techniques for classification are included. Methods of data visualization are introduced. Pre- or Corequisite: DSCI5300

    • DSCI5330Extracting and Transforming Data
      DSCI5330 Extracting and Transforming Data - 3 s.h.

      Students will learn skills of data acquisition, methods, of data cleaning, imputing data, data storage and other important issues required to producing usable data sets. Code books, data standards, and markdown files will be introduced as well as the concept of the data lake. Pre- or Corequisite: DSCI5300.

    • DSCI5340Probability and Statistical Inference
      DSCI5340 Probability and Statistical Inference - 3 s.h.

      This course covers the fundamentals of probability theory and statistical inference used in data science. Students will be introduction to statistical modeling including linear regression models, and generalized linear regression models. Pre- or Corequisite: DSCI5300.

    • DSCI5350Basics of Computer Algorithms and Databases
      DSCI5350 Basics of Computer Algorithms and Databases - 3 s.h.

      An introduction to computer systems, architecture and programming for data science. Coverage includes data structures, algorithms, analysis of algorithms, algorithmic complexity, programming using test-driven design, use of debuggers and profilers, code organization, and version control. Additional topics include data science web applications, SQL, and distributed computing. Pre- or Corequisite: DSCI5300.

    • DSCI5360Regression and Time Series Modeling
      DSCI5360 Regression and Time Series Modeling - 3 s.h.

      A modern introduction to inferential methods for regression analysis and statistical learning, with an emphasis on application in practical settings in the context of learning relationships from observed data. Topics will include application of linear regression, general linear models, variable selection and dimension reduction, and approaches to nonlinear regression. Extensions to other data structures such as longitudinal data and the fundamentals of causal inference will also be introduced and applied. Pre- or Corequisite: DSCI5340.

    • DSCI5370Machine Learning
      DSCI5370 Machine Learning - 3 s.h.

      The course covers the most often used methods of the machine learning in a practical context. Methods such as ridge and lasso regression, cross-validation, support vector machines, decision trees, and ensemble methods, PCA, gradient descent, stochastic gradient descent, and block coordinate descent. Pre- or Corequisite: DSCI5300.

    • DSCI5400Data Mining
      DSCI5400 Data Mining - 3 s.h.

      This course will provide students with an understanding of the field of data mining and knowledge discovery in data. Students will become familiar with the foundations of data mining through exploring real-world use cases and cutting edge research in data mining published in academic journals and conferences from various perspectives. Students will also gain hands on experience with data mining tools combined with machine learning and visualization functions. Pre- or Corequisite: DSCI5340.

    • DSCI5420Artificial Intelligence in Practice
      DSCI5420 Artificial Intelligence in Practice - 3 s.h.

      This course will cover fundamental concepts of artificial intelligence including algorithms and tools as well their real-world applications. Topics include intelligent agents, knowledge reasoning, learning, and AI problem solving in vision, language, robotics, medicine, etc. Special emphasis is placed on how AI technologies transform businesses and our day-to-day lives by influencing society’s values. Pre- or Corequisite: DSCI5330.

    • DSCI5440Big Data Analytics
      DSCI5440 Big Data Analytics - 3 s.h.

      This course provides students with an understanding of the field of large scale data analytics using a high performance, cloud computing data analytics framework. Students will analyze public datasets, network data, and non-structured, steaming dataset. Students will work on real-world cases, learn how to process the data to find valuable insights, and present solutions or suggestions for these cases. Students are encouraged to utilize free and commonly used Open Source Big Data framework and NoSQL database tools. Pre- or Corequisite: DSCI5330.

    • DSCI5500Air Pollution and Health Analytics
      DSCI5500 Air Pollution and Health Analytics - 3 s.h.

      This introductory course will address the relations between air pollution and human health and the environment in the context of statistical and regression analysis. Specific areas include air toxic monitoring, particulate matter and indoor air pollution. Prerequisite: DSCI5340 and DCSI5350 or permission of instructor.

    • DSCI5520Water Quality and Nutrients
      DSCI5520 Water Quality and Nutrients - 3 s.h.

      This introductory course will address the relationship between water pollution and nutrients in the context of statistical and regression analysis. Specific areas include urban and rural fertilizer application, soil partitioning and moisture, remote sensing and imaging. Prerequisite: DSCI5340 and DCSI5350 or permission of instructor.

    • DSCI5540Chemical Emissions Modeling
      DSCI5540 Chemical Emissions Modeling - 3 s.h.

      This course will examine the data science behind the chemical emissions models used to predict episodes of photochemical smog, acid deposition, algal blooms, and other environmental events. The goal of the course is to develop augmented modeling methods for application to regional issues. Prerequisite: DSCI5500 and DCSI5520 or permission of instructor.

    • DSCI5700Internship
      DSCI5700 Internship - 3 s.h.

      Students work in conjunction with a supervisor in industry on current problem of importance. The student will gain experience with real – world problems, client presentations, and written data communications. The supervisor, student, and faculty advisor will construct a project plan with expected accomplishments. The supervisor will provide written feedback on the student including an assessment of how the student performed in meeting the expected accomplishments. The faculty member will be responsible for assigning the final grade. To receive credit the project must take 8 weeks to complete. May be repeated once for Emphasis credit with permission. Prerequisite: DCSI5400 or permission of the instructor.

    • DSCI6000Data Science Capstone
      DSCI6000 Data Science Capstone - 3 s.h.

      Students work with a practicum supervisor in industry or an academic researcher and address a real-world data problem that exercises the skills developed in the program. Students will submit a proposal, weekly status reports, and a final paper and presentation. To receive credit the project must entail at least 115 hours of work and typically takes 8 weeks to complete. Prerequisites: Completion of 27 semester hours of coursework.

    DSCI5300Introduction to Data Science DSCI5320Practical Applications of Data Science DSCI5330Extracting and Transforming Data DSCI5340Probability and Statistical Inference DSCI5350Basics of Computer Algorithms and Databases DSCI5360Regression and Time Series Modeling DSCI5370Machine Learning DSCI5400Data Mining DSCI5420Artificial Intelligence in Practice DSCI5440Big Data Analytics DSCI5500Air Pollution and Health Analytics DSCI5520Water Quality and Nutrients DSCI5540Chemical Emissions Modeling DSCI5700Internship DSCI6000Data Science Capstone
    Course Descriptions
    DSCI5300 Introduction to Data Science - 3 s.h.

    An introduction to the methods of data science through a combination of computational exploration, visualization, and theory. Students will learn scientific computing basics, topics in numerical linear algebra, mathematical probability, statistics, and social and political issues raised by data science. Prerequisites: Prior courses in statistics, calculus and basic programming.

    DSCI5320 Practical Applications of Data Science - 3 s.h.

    Exploratory data analysis is introduced along with fundamental considerations for data analysis on real data sets. Classical models and techniques for classification are included. Methods of data visualization are introduced. Pre- or Corequisite: DSCI5300

    DSCI5330 Extracting and Transforming Data - 3 s.h.

    Students will learn skills of data acquisition, methods, of data cleaning, imputing data, data storage and other important issues required to producing usable data sets. Code books, data standards, and markdown files will be introduced as well as the concept of the data lake. Pre- or Corequisite: DSCI5300.

    DSCI5340 Probability and Statistical Inference - 3 s.h.

    This course covers the fundamentals of probability theory and statistical inference used in data science. Students will be introduction to statistical modeling including linear regression models, and generalized linear regression models. Pre- or Corequisite: DSCI5300.

    DSCI5350 Basics of Computer Algorithms and Databases - 3 s.h.

    An introduction to computer systems, architecture and programming for data science. Coverage includes data structures, algorithms, analysis of algorithms, algorithmic complexity, programming using test-driven design, use of debuggers and profilers, code organization, and version control. Additional topics include data science web applications, SQL, and distributed computing. Pre- or Corequisite: DSCI5300.

    DSCI5360 Regression and Time Series Modeling - 3 s.h.

    A modern introduction to inferential methods for regression analysis and statistical learning, with an emphasis on application in practical settings in the context of learning relationships from observed data. Topics will include application of linear regression, general linear models, variable selection and dimension reduction, and approaches to nonlinear regression. Extensions to other data structures such as longitudinal data and the fundamentals of causal inference will also be introduced and applied. Pre- or Corequisite: DSCI5340.

    DSCI5370 Machine Learning - 3 s.h.

    The course covers the most often used methods of the machine learning in a practical context. Methods such as ridge and lasso regression, cross-validation, support vector machines, decision trees, and ensemble methods, PCA, gradient descent, stochastic gradient descent, and block coordinate descent. Pre- or Corequisite: DSCI5300.

    DSCI5400 Data Mining - 3 s.h.

    This course will provide students with an understanding of the field of data mining and knowledge discovery in data. Students will become familiar with the foundations of data mining through exploring real-world use cases and cutting edge research in data mining published in academic journals and conferences from various perspectives. Students will also gain hands on experience with data mining tools combined with machine learning and visualization functions. Pre- or Corequisite: DSCI5340.

    DSCI5420 Artificial Intelligence in Practice - 3 s.h.

    This course will cover fundamental concepts of artificial intelligence including algorithms and tools as well their real-world applications. Topics include intelligent agents, knowledge reasoning, learning, and AI problem solving in vision, language, robotics, medicine, etc. Special emphasis is placed on how AI technologies transform businesses and our day-to-day lives by influencing society’s values. Pre- or Corequisite: DSCI5330.

    DSCI5440 Big Data Analytics - 3 s.h.

    This course provides students with an understanding of the field of large scale data analytics using a high performance, cloud computing data analytics framework. Students will analyze public datasets, network data, and non-structured, steaming dataset. Students will work on real-world cases, learn how to process the data to find valuable insights, and present solutions or suggestions for these cases. Students are encouraged to utilize free and commonly used Open Source Big Data framework and NoSQL database tools. Pre- or Corequisite: DSCI5330.

    DSCI5500 Air Pollution and Health Analytics - 3 s.h.

    This introductory course will address the relations between air pollution and human health and the environment in the context of statistical and regression analysis. Specific areas include air toxic monitoring, particulate matter and indoor air pollution. Prerequisite: DSCI5340 and DCSI5350 or permission of instructor.

    DSCI5520 Water Quality and Nutrients - 3 s.h.

    This introductory course will address the relationship between water pollution and nutrients in the context of statistical and regression analysis. Specific areas include urban and rural fertilizer application, soil partitioning and moisture, remote sensing and imaging. Prerequisite: DSCI5340 and DCSI5350 or permission of instructor.

    DSCI5540 Chemical Emissions Modeling - 3 s.h.

    This course will examine the data science behind the chemical emissions models used to predict episodes of photochemical smog, acid deposition, algal blooms, and other environmental events. The goal of the course is to develop augmented modeling methods for application to regional issues. Prerequisite: DSCI5500 and DCSI5520 or permission of instructor.

    DSCI5700 Internship - 3 s.h.

    Students work in conjunction with a supervisor in industry on current problem of importance. The student will gain experience with real – world problems, client presentations, and written data communications. The supervisor, student, and faculty advisor will construct a project plan with expected accomplishments. The supervisor will provide written feedback on the student including an assessment of how the student performed in meeting the expected accomplishments. The faculty member will be responsible for assigning the final grade. To receive credit the project must take 8 weeks to complete. May be repeated once for Emphasis credit with permission. Prerequisite: DCSI5400 or permission of the instructor.

    DSCI6000 Data Science Capstone - 3 s.h.

    Students work with a practicum supervisor in industry or an academic researcher and address a real-world data problem that exercises the skills developed in the program. Students will submit a proposal, weekly status reports, and a final paper and presentation. To receive credit the project must entail at least 115 hours of work and typically takes 8 weeks to complete. Prerequisites: Completion of 27 semester hours of coursework.

header pattern
Hear From Our Students & Faculty
Graceland’s data science program is built on the concept of converting data to information so that key questions can be answered and advancements made. In the 21st Century, data skills like those developed in Graceland’s program will be required for successful careers in nearly all areas.
Jeff Draves Jeff Draves, PhD Professor of Chemistry Director of Data Science & Analytics
header pattern
Hear From Our Students & Faculty
Being part of athletics, Residence Life, Student Government, the CSIT department, and many other involvements allowed me to seek leadership opportunities that all significantly attributed to my personal growth. The relationships I made taught me new perspectives and challenged me to pursue excellence. Those opportunities and connections proved to be invaluable and have helped set me up for success going forward.
Dylan Fox '21 Software Engineer & Project Management Computer Science and Information Technology, Data Science, Mathematics
Exceptional Faculty

Applying is Easy (and Free)!

Admission Requirements:

  • Bachelor’s degree or equivalent from an accredited college or university;
  • GPA of a 3.0 or higher on a 4.0 scale;
  • Successful completion (a grade of “C” or better) in the following courses:
    • Calculus (minimum of 8 credit hours);
    • Statistics (minimum of 3 credit hours);
    • Programming courses (minimum of 6 credit hours);
    • Science course with laboratory (minimum of 4 credit hours)
Graduation Requirements.

header pattern header pattern
Careers for Someone with a Masters in Data Science & Analytics

A data science and analytics degree from Graceland University can help to prepare you for these careers:

  • Athletics: NFL, MLB, NBA, FIFA, Racing
  • Companies: Amazon, Walmart, Trip Advisor
  • Social Media: Facebook, Instagram
  • Healthcare: Hospitals, pharmaceutical design
  • Government: NASA, NOAA, FBI, CIA, NSA
  • Agriculture
  • Renewable Energy
  • Car Manufacturing
  • Business Intelligence Analyst
  • Data Scientist or Engineer
  • Marketing Analytics Manager
  • Financial Analyst

…and other exciting areas.

header pattern header pattern
Tuition
FeeCost
Tuition$560 per semester hour
Program Support Fee (online courses)$18 per course
Contact me about this program!
Loading...